More
    HomeTechnologySimplify Automotive Body Motor Controller Designs

    Simplify Automotive Body Motor Controller Designs

    Automotive body electronics systems use electric motors to enhance comfort and convenience for vehicle occupants whether it’s adjusting the perfect seat position or easily opening the trunk.
    Metal-oxide semiconductor field-effect transistors (MOSFETs) – arranged in the shape of the letter “H” – control the electric motors for these applications. But using MOSFETs as switches presents new technical challenges in electronic control module designs, including electromagnetic interference (EMI) and thermal management, current sensing, power-off braking, and diagnostics and protection. The broad portfolio of integrated circuit (IC) motor driver products developed by Texas Instruments integrate analog features that help electronic control module designers overcome these challenges while reducing solution size and shortening development times. Moreover, the products range from single half-bridge to multiple H-bridge gate drivers products that allow you to easily scale your designs based on your specific design implementation.

    In this article, we will discuss specific analog features integrated in motor drivers ICs that help address these design challenges.


    Mitigating EMI

    EMI mitigation is achieved using features and solutions both at IC level and at printed circuit-board (PCB) level. One key method to mitigate to EMI is control of pulse width modulation (PWM) edge rates. Gate driver products such as  DRV8705-Q1DRV8706-Q1DRV8714-Q1 and DRV8718-Q1 gate drivers for brushed DC (BDC) motors, and three-phase DRV8343-Q1 for brushless DC (BLDC) motors all integrate smart gate-drive technology, which is specifically used to control the PWM edge slew rates. Furthermore, these devices offer the ability to select slew rate that best mitigates EMI. Another common technique used to reduce EMI is dithering the main clock frequency. DRV10983-Q1 three-phase  BLDC motor driver with integrated MOSFETs also integrates dithering of the main clock frequency, thus reducing the amplitude by spreading the peak across the spectrum


    Managing thermals

    Motor operating and stall currents have a wide range of values based on the load being driven. For high current loads, gate-driver products give you the choice of implementing your designs using discrete MOSFETs. Electronic control module designers can optimize layout and thus achieve optimal thermal management. For low load current loads, devices such as DRV8873-Q1DRV8874-Q1 and DRV8876-Q1 with integrated H-bridge MOSFETs can be used to drive the loads while achieving optimal thermal management.  Moreover, for low current loads driven by three-phase BLDC motors, DRV10983-Q1with integrated MOSFETs can be used. Note that DRV10983-Q1 also integrates the commutation algorithm, enabling single-chip solution to drive the motor.


    Current sensing

    The current in the motor is measured to detect circuit and motor faults, and to infer motor position using ripple counting. All TI BDC and BLDC motor- and gate-driver products integrate current-sense amplifiers to amplify the voltage across the resistor. Furthermore, the DRV8106-Q1DRV8706-Q1DRV8714-Q1 and DRV8718-Q1 offer an in-line current-sense amplifier. Using in-line current sense measurements, the direction of motor rotation can also be determined.

    Windows are traditionally driven using BDC motors. However, system designers are investigating the use of BLDC motors to drive the window because BLDC motors are quieter. In addition, BLDC motors are also being considered for rotating the seat base in autonomous vehicles. The 3-phase smart gate driver DRV8343-Q1 which integrates the current sense function can be used in these applications.


    Power-off braking

    With MOSFET solutions, a motor can be rotated freely when power to the motor is turned off. In such cases, moving the load manually, for example, opening or closing a power trunk manually, could result in large back EMF which could damage the electronics. The DRV8714-Q1 and DRV8718-Q1, targeted for trunk control module applications, integrate a power-off braking feature, which measures the voltage being generated and applies electronic brakes to the motor. This feature stops the motor from rotating, which in turn stops the generation of current.


    Diagnostics and protection

    Detecting circuit faults and protecting the systems against these faults is an important requirement when controlling motors. The BDC and BLDC gate drivers integrate diagnostic circuits to detect open and short circuits. In addition, we also provide failure-mode distribution and pin failure mode analysis information for some ICs to aid functional safety design when needed.

    Implementing control modules in body applications

    Table 1 maps the products to the motors used in these applications.

    Courtesy- Texas Instruments

    Related Post

    Most Popular

    Best Picks

    STPOWER Studio: 3 new topologies for accurate electro-thermal simulation on STPOWER devices

    Author: STMicroelectronics STPOWER Studio 4.0 just became available and now supports three new topologies (1-phase full bridge, 1-phase half-bridge, and 3-phase 3-level T-NPC) to cover significantly...

    What is an STM32 MPU? Understanding the new realities...

    Author: STMicroelectronics What’s the difference between a microcontroller (MCU) and a microprocessor (MPU)? In simplistic terms, both are the brains of an embedded system. A few...

    From basic training to world-class competitions: MEMS sensors in...

    Author: STMicroelectronics With the global spotlight on sports these days, it is almost impossible to overlook the technological innovations like the MEMS (Micro-Electro-Mechanical Systems) sensors. Embedded in wearable...

    STM32WB0x: Meet all the new wireless STM32WBs that will...

    Author: STMicroelectronics ST is launching the STM32WB05 and the STM32WB06/07, thus extending the STM32WB0 series inaugurated late last year with the introduction of the STM32WB09. The new family fully realizes...

    DEP Meshworks: Pioneering CAE Innovations for EVs and Autonomous...

    Detroit Engineered Products (DEP) is a global Engineering Solutions and Product Development company with a rich 25-year legacy. Since its inception in 1998 in...

    “India’s Electric Vehicle Revolution: Navigating Challenges and Seizing Opportunities...

    The EV industry of the nation is witnessing a tectonic boom. With the advent of government policies about a clean and green environment, the...

    Wireless Power in the Kitchen

    Authors: Akshat JAIN, STMicroelectronics India, Fabrizio Di FRANCO, STMicroelectronics, Italy, Martin DENDA, Rene WUTTE, STMicroelectronics Austria, Bruno TISSERAND, STMicroelectronics, France Wireless power is going to...

    MWC Shanghai 2024: 3 demos that are about improving...

    Author: STMicroelectronics MWC Shanghai 2024 should be memorable, thanks to more than 30 innovative product showcases and demonstrations, nine applications on display, and more than...

    AEKD-TRUNKL1: one power liftgate demo can transform how engineers...

    Author: STMicroelectronics The power liftgate built on the AEKD-TRUNKL1 is always a highly popular and easily recognizable demo, as its loud beeps alert attendees that the trunk...

    Must Read