More
    HomeEV NewsWhen will we Conquer Range Anxiety in Electric Vehicles?

    When will we Conquer Range Anxiety in Electric Vehicles?

    Imagine this common scenario: You merge onto the interstate in your car for a quick trip, then encounter a serious automobile accident that stops traffic cold. You have 20 miles to go until empty and no way to exit for gasoline.

    That worrisome feeling is called range anxiety and it’s the major barrier to larger scale electric vehicle adoption.

    Internal combustion engine cars provide plenty of range, refueling possibilities are ubiquitous and it takes no time to refuel. For electric vehicles, range is much more limited, recharging takes longer and, consequently, range anxiety is more frequent.

    While range anxiety is still a barrier, the good news is innovators are making important progress toward a world where electric vehicle batteries deliver a better travel experience, enabling you to turn the key and go as far as you want, whenever you want.

    We talked with John Johnson of the STMicroelectronics automotive systems marketing team to learn about the latest trends and challenges in electric vehicle battery design.

    It’s fun and instructive to look at the history of various technologies, and that’s certainly true of electric vehicles.

    The first rechargeable battery was developed in France in 1859 and early vehicles used batteries to operate. Several innovations quickly changed the landscape: The discovery of oil along with development of the internal combustion engine and improved roads made longer trips possible. Batteries could no longer meet the need.

    Even though electric cars outsold internal combustion engine-powered cars initially, internal combustion vehicles quickly passed them by.

    Now, electric vehicles are making serious inroads to overcome range anxiety.

    “Battery range is getting better all the time. That’s not just because battery packs are growing in capacity but also because battery management is getting better,” Johnson said.

    To make the most of your design and reduce range anxiety, Johnson recommends evaluating these key performance indicators:

    Battery Basics

    Key Performance Indicators (KPIs)

    PARAMETER UNIT SIGNIFICANCE TO END-PRODUCT
    Energy Density LW-h/l compactness, range (vehicle), operating time
    Specific Power W/kg weight, range
    Charge Time hrs Utility (if rechargeable is required)
    Service Life Cycles, Years Reliability, Long term cost
    Cost $ Acquisition Cost, replacement cost
    PARAMETER UNIT SIGNIFICANCETO THE CONSUMER
    State of charge (SOC) % How far can I go?
    State of Health (SOH) % When will I need to replace the battery?

    Whether you’re designing a forklift, a drone or an electric vehicle, pay attention to these considerations to get your battery design right from the beginning.

    Johnson says he’s optimistic about the future of electric vehicles and innovation to conquer range anxiety.

    “When hybrid vehicles came out, the batteries were afterthoughts. Everything was kind of clunky. In today’s electric vehicles, especially from startups, we see slick skateboard-type designs that you could bolt any chassis onto and make a car or a delivery vehicle. It’s going to be really impressive to see the types of vehicles coming out on the market,” he said.

    Authored Article By: Jason Struble

    Related Post

    Most Popular

    Best Picks

    DEP Meshworks: Pioneering CAE Innovations for EVs and Autonomous Vehicles in a Rapidly Evolving Automotive Industry

    Detroit Engineered Products (DEP) is a global Engineering Solutions and Product Development company with a rich 25-year legacy. Since its inception in 1998 in...

    “India’s Electric Vehicle Revolution: Navigating Challenges and Seizing Opportunities...

    The EV industry of the nation is witnessing a tectonic boom. With the advent of government policies about a clean and green environment, the...

    Wireless Power in the Kitchen

    Authors: Akshat JAIN, STMicroelectronics India, Fabrizio Di FRANCO, STMicroelectronics, Italy, Martin DENDA, Rene WUTTE, STMicroelectronics Austria, Bruno TISSERAND, STMicroelectronics, France Wireless power is going to...

    MWC Shanghai 2024: 3 demos that are about improving...

    Author: STMicroelectronics MWC Shanghai 2024 should be memorable, thanks to more than 30 innovative product showcases and demonstrations, nine applications on display, and more than...

    AEKD-TRUNKL1: one power liftgate demo can transform how engineers...

    Author: STMicroelectronics The power liftgate built on the AEKD-TRUNKL1 is always a highly popular and easily recognizable demo, as its loud beeps alert attendees that the trunk...

    STMicroelectronics offers Cost-Effective, Fastest, and First STM32 MCUs to...

    STMicroelectronics is a global leader in the semiconductor space developing customer-centric and sustainable products. Their STM32 Portfolio is a hugely popular highly reliable and...

    India’s Promising EV Market is Lending Hope for an...

    The world faces serious environmental concerns that require immediate attention and progressive solutions. The human civilization is at a crossroads where every decision will...

    Sustainability is not just a corporate responsibility, but a...

    STMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications is among the early changemakers in the ongoing sustainability issue. The...

    Balancing Currents for Optimal Performance in Automotive Smart Drivers

    Author: Giusy Gambino, Marcello Vecchio, and Filippo Scrimizzi from STMicroelectronics, Catania, Italy When developing distributed intelligence for smart power switches in automotive power management systems, it...

    Must Read